Frontend Forever App
We have a mobile app for you to download and use. And you can unlock many features in the app.
Get it now
Intall Later
Run
HTML
CSS
Javascript
Output
Document
@charset "UTF-8"; @import url(https://fonts.googleapis.com/css?family=Nunito+Sans:300,400,600,700,800); *, :after, :before { box-sizing: border-box; padding: 0; margin: 0; } /* latin-ext */ @font-face { font-family: 'Courier Prime'; font-style: normal; font-weight: 400; font-display: swap; src: url(https://fonts.gstatic.com/s/courierprime/v9/u-450q2lgwslOqpF_6gQ8kELaw9pWt_-.woff2) format('woff2'); unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF; } /* latin */ @font-face { font-family: 'Courier Prime'; font-style: normal; font-weight: 400; font-display: swap; src: url(https://fonts.gstatic.com/s/courierprime/v9/u-450q2lgwslOqpF_6gQ8kELawFpWg.woff2) format('woff2'); unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; } body, html{ margin: 0; height: 100vh; background: linear-gradient(-45deg, #333, #000); overflow: hidden; } #c{ border: 3px solid #fff3; position: absolute; background: #04f1; left: 50%; top: 50%; border-radius: 10px; transform: translate(-50%, -50%); }
console.log("Event Fired") c = document.querySelector('#c') c.width = 1920 c.height = 1080 x = c.getContext('2d') C = Math.cos S = Math.sin t = 0 T = Math.tan rsz = window.onresize = () =>{ let b = document.body let margin = 10 let n let d = .5625 if(b.clientHeight/b.clientWidth > d){ c.style.width = `${(n=b.clientWidth) - margin*2}px` c.style.height = `${n*d - margin*2}px` }else{ c.style.height = `${(n=b.clientHeight) - margin*2}px` c.style.width = `${n/d - margin*2}px` } } rsz() async function Draw(){ if(!t){ oX = oY = oZ = 0 Rn = Math.random R = (Rl,Pt,Yw,m) => { let p M = Math A = M.atan2 H = M.hypot X = S(p=A(X,Z)+Yw) * (d=H(X,Z)) Z = C(p)*d Y = S(p=A(Y,Z)+Pt) * (d=H(Y,Z)) Z = C(p)*d X = S(p=A(X,Y)+Rl) * (d=H(X,Y)) Y = C(p) * d if(m){ X+=oX Y+=oY Z+=oZ } } R2=(Rl,Pt,Yw,m=false)=>{ M=Math A=M.atan2 H=M.hypot if(m){ X-=oX Y-=oY Z-=oZ } X=S(p=A(X,Y)+Rl)*(d=H(X,Y)) Y=C(p)*d Y=S(p=A(Y,Z)+Pt)*(d=H(Y,Z)) Z=C(p)*d X=S(p=A(X,Z)+Yw)*(d=H(X,Z)) Z=C(p)*d } Q = () => [c.width/2+X/Z*1e3, c.height/2+Y/Z*1e3] I=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0 Normal = (facet, autoFlipNormals=false, X1=0, Y1=0, Z1=0, flip_=false) => { let ax = 0, ay = 0, az = 0 facet.map(q_=>{ ax += q_[0], ay += q_[1], az += q_[2] }) ax /= facet.length, ay /= facet.length, az /= facet.length let b1 = facet[2][0]-facet[1][0], b2 = facet[2][1]-facet[1][1], b3 = facet[2][2]-facet[1][2] let c1 = facet[1][0]-facet[0][0], c2 = facet[1][1]-facet[0][1], c3 = facet[1][2]-facet[0][2] crs = [b2*c3-b3*c2,b3*c1-b1*c3,b1*c2-b2*c1] d = Math.hypot(...crs)+.0001 let nls = 1 //normal line length crs = crs.map(q=>q/d*nls) let X1_ = ax, Y1_ = ay, Z1_ = az let flip = 1 if(autoFlipNormals){ let d1_ = Math.hypot(X1_-X1,Y1_-Y1,Z1_-Z1) let d2_ = Math.hypot(X1-(ax + crs[0]/99),Y1-(ay + crs[1]/99),Z1-(az + crs[2]/99)) flip = d2_>d1_?-1:1 } if(flip_) flip *=-1 let X2_ = ax + (crs[0]*=flip), Y2_ = ay + (crs[1]*=flip), Z2_ = az + (crs[2]*=flip) return [X1_, Y1_, Z1_, X2_, Y2_, Z2_] } drawRotatedImage = (img,tx,ty,w,h,theta)=>{ x.save() x.translate(tx,ty) x.rotate(theta) x.drawImage(img,-w/2,-h/2,w,h) x.restore() } reflect = (a, n) => { let d1 = Math.hypot(...a)+.0001 let d2 = Math.hypot(...n)+.0001 a[0]/=d1 a[1]/=d1 a[2]/=d1 n[0]/=d2 n[1]/=d2 n[2]/=d2 let dot = -a[0]*n[0] + -a[1]*n[1] + -a[2]*n[2] let rx = -a[0] - 2 * n[0] * dot let ry = -a[1] - 2 * n[1] * dot let rz = -a[2] - 2 * n[2] * dot return [-rx*d1, -ry*d1, -rz*d1] } burst = new Image() burst.src = "https://srmcgann.github.io/temp/burst.png" burst1 = new Image() burst1.src = "https://srmcgann.github.io/temp/burst1.png" burst2 = new Image() burst2.src = "https://srmcgann.github.io/temp/burst2.png" burst3 = new Image() burst3.src = "https://srmcgann.github.io/temp/burst3.png" burst4 = new Image() burst4.src = "https://srmcgann.github.io/temp/burst4.png" burstz = [ burst1, burst2, burst3, burst4] //burstz = [ burst, burst, burst, burst] sphere_monochrome = new Image() sphere_monochrome.src = 'https://srmcgann.github.io/temp13/sphere_monochrome.png' starsLoaded = false, starImgs = [{loaded: false}] starImgs = Array(9).fill().map((v,i) => { let a = {img: new Image(), loaded: false} a.img.onload = () => { a.loaded = true setTimeout(()=>{ if(starImgs.filter(v=>v.loaded).length == 9) starsLoaded = true }, 0) } a.img.src = `https://srmcgann.github.io/stars/star${i+1}.png` return a }) Pip = (tx,ty,tz, facet) => { let ax=0 let ay=0 facet.map((v, i) => { ax+=v[0] ay+=v[1] }) ax /= facet.length ay /= facet.length let X1 = ax let Y1 = ay let X2 = tx let Y2 = ty let ct = 0 let l facet.map((v,i) => { let l1 = i let l2 = (i+1)%facet.length let X3 = facet[l1][0] let Y3 = facet[l1][1] let X4 = facet[l2][0] let Y4 = facet[l2][1] if(l=I(X1,Y1,X2,Y2,X3,Y3,X4,Y4)) ct++ }) return [ct == 0, [tx-ax, ty-ay]] } lineFaceI = (X1, Y1, Z1, X2, Y2, Z2, facet, autoFlipNormals=false, showNormals=false) => { let X_, Y_, Z_, d, m, l_,K,J,L,p let I_=(A,B,M,D,E,F,G,H)=>(K=((G-E)*(B-F)-(H-F)*(A-E))/(J=(H-F)*(M-A)-(G-E)*(D-B)))>=0&&K<=1&&(L=((M-A)*(B-F)-(D-B)*(A-E))/J)>=0&&L<=1?[A+K*(M-A),B+K*(D-B)]:0 let Q_= () => [c.width/2+X_/Z_*1e3, c.height/2+Y_/Z_*1e3] let R_ = (Rl,Pt,Yw,m)=>{ let M=Math, A=M.atan2, H=M.hypot X_ = S(p=A(X_,Z_)+Yw) * (d=H(X_,Z_)) Z_ = C(p)*d X_ = S(p=A(X_,Y_)+Rl) * (d=H(X_,Y_)) Y_ = C(p) * d Y_ = S(p=A(Y_,Z_)+Pt) * (d=H(Y_,Z_)) Z_ = C(p)*d if(m){ X_+=oX,Y_+=oY,Z_+=oZ } } let rotSwitch = m =>{ switch(m){ case 0: R_(0,0,Math.PI/2); break case 1: R_(0,Math.PI/2,0); break case 2: R_(Math.PI/2,0,Math.PI/2); break } } let ax = 0, ay = 0, az = 0 facet.map(q_=>{ ax += q_[0], ay += q_[1], az += q_[2] }) ax /= facet.length, ay /= facet.length, az /= facet.length let b1 = facet[2][0]-facet[1][0], b2 = facet[2][1]-facet[1][1], b3 = facet[2][2]-facet[1][2] let c1 = facet[1][0]-facet[0][0], c2 = facet[1][1]-facet[0][1], c3 = facet[1][2]-facet[0][2] let crs = [b2*c3-b3*c2,b3*c1-b1*c3,b1*c2-b2*c1] d = Math.hypot(...crs)+.001 let nls = .25 //normal line length crs = crs.map(q=>q/d*nls) let X1_ = ax, Y1_ = ay, Z1_ = az let flip = 1 if(autoFlipNormals){ let d1_ = Math.hypot(X1_-X1,Y1_-Y1,Z1_-Z1) let d2_ = Math.hypot(X1-(ax + crs[0]/99),Y1-(ay + crs[1]/99),Z1-(az + crs[2]/99)) flip = d2_>d1_?-1:1 } let X2_ = ax + (crs[0]*=flip), Y2_ = ay + (crs[1]*=flip), Z2_ = az + (crs[2]*=flip) if(showNormals){ x.beginPath() X_ = X1_, Y_ = Y1_, Z_ = Z1_ R_(Rl,Pt,Yw,1) if(Z_>0) x.lineTo(...Q_()) X_ = X2_, Y_ = Y2_, Z_ = Z2_ R_(Rl,Pt,Yw,1) if(Z_>0) x.lineTo(...Q_()) x.lineWidth = 5 x.strokeStyle='#f004' x.stroke() } let p1_ = Math.atan2(X2_-X1_,Z2_-Z1_) let p2_ = -(Math.acos((Y2_-Y1_)/(Math.hypot(X2_-X1_,Y2_-Y1_,Z2_-Z1_)+.001))+Math.PI/2) let isc = false, iscs = [false,false,false] X_ = X1, Y_ = Y1, Z_ = Z1 R_(0,-p2_,-p1_) let rx_ = X_, ry_ = Y_, rz_ = Z_ for(let m=3;m--;){ if(isc === false){ X_ = rx_, Y_ = ry_, Z_ = rz_ rotSwitch(m) X1_ = X_, Y1_ = Y_, Z1_ = Z_ = 5, X_ = X2, Y_ = Y2, Z_ = Z2 R_(0,-p2_,-p1_) rotSwitch(m) X2_ = X_, Y2_ = Y_, Z2_ = Z_ facet.map((q_,j_)=>{ if(isc === false){ let l = j_ X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) rotSwitch(m) let X3_=X_, Y3_=Y_, Z3_=Z_ l = (j_+1)%facet.length X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) rotSwitch(m) let X4_ = X_, Y4_ = Y_, Z4_ = Z_ if(l_=I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) iscs[m] = l_ } }) } } if(iscs.filter(v=>v!==false).length==3){ let iscx = iscs[1][0], iscy = iscs[0][1], iscz = iscs[0][0] let pointInPoly = true ax=0, ay=0, az=0 facet.map((q_, j_)=>{ ax+=q_[0], ay+=q_[1], az+=q_[2] }) ax/=facet.length, ay/=facet.length, az/=facet.length X_ = ax, Y_ = ay, Z_ = az R_(0,-p2_,-p1_) X1_ = X_, Y1_ = Y_, Z1_ = Z_ X2_ = iscx, Y2_ = iscy, Z2_ = iscz facet.map((q_,j_)=>{ if(pointInPoly){ let l = j_ X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) let X3_ = X_, Y3_ = Y_, Z3_ = Z_ l = (j_+1)%facet.length X_ = facet[l][0], Y_ = facet[l][1], Z_ = facet[l][2] R_(0,-p2_,-p1_) let X4_ = X_, Y4_ = Y_, Z4_ = Z_ if(I_(X1_,Y1_,X2_,Y2_,X3_,Y3_,X4_,Y4_)) pointInPoly = false } }) if(pointInPoly){ X_ = iscx, Y_ = iscy, Z_ = iscz R_(0,p2_,0) R_(0,0,p1_) isc = [[X_,Y_,Z_], [crs[0],crs[1],crs[2]]] } } return isc } TruncatedOctahedron = ls => { let shp = [], a = [] mind = 6e6 for(let i=6;i--;){ X = S(p=Math.PI*2/6*i+Math.PI/6) Y = C(p) Z = 0 if(Y
{ X = v[0] Y = v[1] - mind Z = v[2] R(0,theta,0) v[0] = X v[1] = Y v[2] = Z+1.5 }) b = JSON.parse(JSON.stringify(a)).map(v=>{ v[1] *= -1 return v }) shp = [...shp, a, b] e = JSON.parse(JSON.stringify(shp)).map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI) q[0] = X q[1] = Y q[2] = Z }) return v }) shp = [...shp, ...e] e = JSON.parse(JSON.stringify(shp)).map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) q[0] = X q[1] = Y q[2] = Z }) return v }) shp = [...shp, ...e] coords = [ [[3,1],[4,3],[4,4],[3,2]], [[3,4],[3,3],[2,4],[6,2]], [[1,4],[0,3],[0,4],[4,2]], [[1,1],[1,2],[6,4],[7,3]], [[3,5],[7,5],[1,5],[3,0]], [[2,5],[6,5],[0,5],[4,5]] ] a = [] coords.map(v=>{ b = [] v.map(q=>{ X = shp[q[0]][q[1]][0] Y = shp[q[0]][q[1]][1] Z = shp[q[0]][q[1]][2] b = [...b, [X,Y,Z]] }) a = [...a, b] }) shp = [...shp, ...a] return shp.map(v=>{ v.map(q=>{ q[0]/=3 q[1]/=3 q[2]/=3 q[0]*=ls q[1]*=ls q[2]*=ls }) return v }) } Torus = (rw, cl, ls1, ls2, parts=1, twists=0, part_spacing=1.5) => { t_ = C(t)*8 let ret = [], tx=0, ty=0, tz=0, prl1 = 0, p2a = 0, prl2=0, p2b = 0 tx1=ty1=tz1=tx2=ty2=tz2=0 for(let m=parts;m--;){ avgs = Array(rw).fill().map(v=>[0,0,0]) for(j=rw;j--;)for(let i = cl;i--;){ if(parts>1){ ls3 = ls1*part_spacing X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(prl1 = Math.PI*2/rw*(j-1)*twists+t_,0,0) tx1 = X ty1 = Y tz1 = Z R(0, 0, Math.PI*2/rw*(j-1)) ax1 = X ay1 = Y az1 = Z X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(prl2 = Math.PI*2/rw*(j)*twists+t_,0,0) tx2 = X ty2 = Y tz2 = Z R(0, 0, Math.PI*2/rw*j) ax2 = X ay2 = Y az2 = Z p1a = Math.atan2(ax2-ax1,az2-az1) p2a = Math.PI/2+Math.acos((ay2-ay1)/(Math.hypot(ax2-ax1,ay2-ay1,az2-az1)+.001)) X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(Math.PI*2/rw*(j)*twists+t_,0,0) tx1b = X ty1b = Y tz1b = Z R(0, 0, Math.PI*2/rw*j) ax1b = X ay1b = Y az1b = Z X = S(p=Math.PI*2/parts*m) * ls3 Y = C(p) * ls3 Z = 0 R(Math.PI*2/rw*(j+1)*twists+t_,0,0) tx2b = X ty2b = Y tz2b = Z R(0, 0, Math.PI*2/rw*(j+1)) ax2b = X ay2b = Y az2b = Z p1b = Math.atan2(ax2b-ax1b,az2b-az1b) p2b = Math.PI/2+Math.acos((ay2b-ay1b)/(Math.hypot(ax2b-ax1b,ay2b-ay1b,az2b-az1b)+.001)) } a = [] X = S(p=Math.PI*2/cl*i) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1a) R(prl1,p2a,0) X += ls2 + tx1, Y += ty1, Z += tz1 R(0, 0, Math.PI*2/rw*j) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/cl*(i+1)) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1a) R(prl1,p2a,0) X += ls2 + tx1, Y += ty1, Z += tz1 R(0, 0, Math.PI*2/rw*j) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/cl*(i+1)) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1b) R(prl2,p2b,0) X += ls2 + tx2, Y += ty2, Z += tz2 R(0, 0, Math.PI*2/rw*(j+1)) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/cl*i) * ls1 Y = C(p) * ls1 Z = 0 //R(0,0,-p1b) R(prl2,p2b,0) X += ls2 + tx2, Y += ty2, Z += tz2 R(0, 0, Math.PI*2/rw*(j+1)) a = [...a, [X,Y,Z]] ret = [...ret, a] } } return ret } Cylinder = (rw, cl, ls1, ls2, caps=false) => { let a = [] for(let i=rw;i--;){ let b = [] for(let j=cl;j--;){ X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] } if(caps) a = [...a, b] for(let j=cl;j--;){ b = [] X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*(j+1)) * ls1 Y = (1/rw*i-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*(j+1)) * ls1 Y = (1/rw*(i+1)-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] X = S(p=Math.PI*2/cl*j) * ls1 Y = (1/rw*(i+1)-.5)*ls2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] a = [...a, b] } } b = [] for(let j=cl;j--;){ X = S(p=Math.PI*2/cl*j) * ls1 Y = ls2/2 Z = C(p) * ls1 b = [...b, [X,Y,Z]] } if(caps) a = [...a, b] return a } Tetrahedron = size => { ret = [] a = [] let h = size/1.4142/1.25 for(i=3;i--;){ X = S(p=Math.PI*2/3*i) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] } ret = [...ret, a] for(j=3;j--;){ a = [] X = 0 Y = 0 Z = -h a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/3*j) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/3*(j+1)) * size/1.25 Y = C(p) * size/1.25 Z = h a = [...a, [X,Y,Z]] ret = [...ret, a] } ax=ay=az=ct=0 ret.map(v=>{ v.map(q=>{ ax+=q[0] ay+=q[1] az+=q[2] ct++ }) }) ax/=ct ay/=ct az/=ct ret.map(v=>{ v.map(q=>{ q[0]-=ax q[1]-=ay q[2]-=az }) }) return ret } StellatedDodecahedron = size => { let a = [] let core = subDividedIcosahedron(size).map((v, i) => { ax = ay = az = 0 v.map(q => { ax += q[0] ay += q[1] az += q[2] }) ax /= v.length ay /= v.length az /= v.length d = Math.hypot(ax,ay,az) ls = d * 4.5 / size v.map((q, j)=>{ b = [] l1 = j l2 = (j+1)%v.length X = v[l1][0] Y = v[l1][1] Z = v[l1][2] b = [...b, [X,Y,Z]] X = v[l2][0] Y = v[l2][1] Z = v[l2][2] b = [...b, [X,Y,Z]] X = ax*ls Y = ay*ls Z = az*ls b = [...b, [X,Y,Z]] a = [...a, b] }) return v }) maxd = -1e6 a.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] if((d = Math.hypot(X,Y,Z))>maxd) maxd = d }) }) return a.map(v => { v.map(q => { X = q[0] Y = q[1] Z = q[2] d = Math.hypot(X,Y,Z) q[0] /= maxd q[1] /= maxd q[2] /= maxd q[0] *= size q[1] *= size q[2] *= size }) return v }) } Cube = size => { for(CB=[],j=6;j--;CB=[...CB,b])for(b=[],i=4;i--;)b=[...b,[(a=[S(p=Math.PI*2/4*i+Math.PI/4),C(p),2**.5/2])[j%3]*(l=j<3?size/2**.5:-size/2**.5),a[(j+1)%3]*l,a[(j+2)%3]*l]] return CB } Octahedron = size => { ret = [] let h = size/1.25 for(j=8;j--;){ a = [] X = 0 Y = 0 Z = h * (j<4?-1:1) a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/4*j) * size/1.25 Y = C(p) * size/1.25 Z = 0 a = [...a, [X,Y,Z]] X = S(p=Math.PI*2/4*(j+1)) * size/1.25 Y = C(p) * size/1.25 Z = 0 a = [...a, [X,Y,Z]] ret = [...ret, a] } return ret } Dodecahedron = size => { ret = [] a = [] mind = -6e6 for(i=5;i--;){ X=S(p=Math.PI*2/5*i + Math.PI/5) Y=C(p) Z=0 if(Y>mind) mind=Y a = [...a, [X,Y,Z]] } a.map(v=>{ X = v[0] Y = v[1]-=mind Z = v[2] R(0, .553573, 0) v[0] = X v[1] = Y v[2] = Z }) b = JSON.parse(JSON.stringify(a)) b.map(v=>{ v[1] *= -1 }) ret = [...ret, a, b] mind = -6e6 ret.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] if(Z>mind)mind = Z }) }) d1=Math.hypot(ret[0][0][0]-ret[0][1][0],ret[0][0][1]-ret[0][1][1],ret[0][0][2]-ret[0][1][2]) ret.map(v=>{ v.map(q=>{ q[2]-=mind+d1/2 }) }) b = JSON.parse(JSON.stringify(ret)) b.map(v=>{ v.map(q=>{ q[2]*=-1 }) }) ret = [...ret, ...b] b = JSON.parse(JSON.stringify(ret)) b.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) R(0,Math.PI/2,0) q[0] = X q[1] = Y q[2] = Z }) }) e = JSON.parse(JSON.stringify(ret)) e.map(v=>{ v.map(q=>{ X = q[0] Y = q[1] Z = q[2] R(0,0,Math.PI/2) R(Math.PI/2,0,0) q[0] = X q[1] = Y q[2] = Z }) }) ret = [...ret, ...b, ...e] ret.map(v=>{ v.map(q=>{ q[0] *= size/2 q[1] *= size/2 q[2] *= size/2 }) }) return ret } Icosahedron = size => { ret = [] let B = [ [[0,3],[1,0],[2,2]], [[0,3],[1,0],[1,3]], [[0,3],[2,3],[1,3]], [[0,2],[2,1],[1,0]], [[0,2],[1,3],[1,0]], [[0,2],[1,3],[2,0]], [[0,3],[2,2],[0,0]], [[1,0],[2,2],[2,1]], [[1,1],[2,2],[2,1]], [[1,1],[2,2],[0,0]], [[1,1],[2,1],[0,1]], [[0,2],[2,1],[0,1]], [[2,0],[1,2],[2,3]], [[0,0],[0,3],[2,3]], [[1,3],[2,0],[2,3]], [[2,3],[0,0],[1,2]], [[1,2],[2,0],[0,1]], [[0,0],[1,2],[1,1]], [[0,1],[1,2],[1,1]], [[0,2],[2,0],[0,1]], ] for(p=[1,1],i=38;i--;)p=[...p,p[l=p.length-1]+p[l-1]] phi = p[l]/p[l-1] a = [ [-phi,-1,0], [phi,-1,0], [phi,1,0], [-phi,1,0], ] for(j=3;j--;ret=[...ret, b])for(b=[],i=4;i--;) b = [...b, [a[i][j],a[i][(j+1)%3],a[i][(j+2)%3]]] ret.map(v=>{ v.map(q=>{ q[0]*=size/2.25 q[1]*=size/2.25 q[2]*=size/2.25 }) }) cp = JSON.parse(JSON.stringify(ret)) out=[] a = [] B.map(v=>{ idx1a = v[0][0] idx2a = v[1][0] idx3a = v[2][0] idx1b = v[0][1] idx2b = v[1][1] idx3b = v[2][1] a = [...a, [cp[idx1a][idx1b],cp[idx2a][idx2b],cp[idx3a][idx3b]]] }) out = [...out, ...a] return out } subbed = (subs, size, sphereize, shape, shapeName='') => { let X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, mx1, my1, mz1 let cx, cy, cz, X5, Y5, Z5, mx2, my2, mz2, mx3, my3, mz3, a let l, X6, Y6, Z6, mx5, my5, mz5, mx6, my6, mz6, depth depth = 0 for(let m=subs; m--;){ base = shape shape = [] base.map(v=>{ l = 0 X1 = v[l][0] Y1 = v[l][1] Z1 = v[l][2] l = 1 X2 = v[l][0] Y2 = v[l][1] Z2 = v[l][2] l = 2 X3 = v[l][0] Y3 = v[l][1] Z3 = v[l][2] if(v.length > 3){ l = 3 X4 = v[l][0] Y4 = v[l][1] Z4 = v[l][2] if(v.length > 4){ l = 4 X5 = v[l][0] Y5 = v[l][1] Z5 = v[l][2] } if(v.length > 5){ l = 5 X6 = v[l][0] Y6 = v[l][1] Z6 = v[l][2] } } mx1 = (X1+X2)/2 my1 = (Y1+Y2)/2 mz1 = (Z1+Z2)/2 mx2 = (X2+X3)/2 my2 = (Y2+Y3)/2 mz2 = (Z2+Z3)/2 a = [] switch(v.length){ case 3: mx3 = (X3+X1)/2 my3 = (Y3+Y1)/2 mz3 = (Z3+Z1)/2 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] break case 4: mx3 = (X3+X4)/2 my3 = (Y3+Y4)/2 mz3 = (Z3+Z4)/2 mx4 = (X4+X1)/2 my4 = (Y4+Y1)/2 mz4 = (Z4+Z1)/2 cx = (X1+X2+X3+X4)/4 cy = (Y1+Y2+Y3+Y4)/4 cz = (Z1+Z2+Z3+Z4)/4 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx4, Y = my4, Z = mz4, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx1, Y = my1, Z = mz1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx2, Y = my2, Z = mz2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = mx4, Y = my4, Z = mz4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] X = mx3, Y = my3, Z = mz3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] shape = [...shape, a] break case 5: cx = (X1+X2+X3+X4+X5)/5 cy = (Y1+Y2+Y3+Y4+Y5)/5 cz = (Z1+Z2+Z3+Z4+Z5)/5 mx3 = (X3+X4)/2 my3 = (Y3+Y4)/2 mz3 = (Z3+Z4)/2 mx4 = (X4+X5)/2 my4 = (Y4+Y5)/2 mz4 = (Z4+Z5)/2 mx5 = (X5+X1)/2 my5 = (Y5+Y1)/2 mz5 = (Z5+Z1)/2 X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] break case 6: cx = (X1+X2+X3+X4+X5+X6)/6 cy = (Y1+Y2+Y3+Y4+Y5+Y6)/6 cz = (Z1+Z2+Z3+Z4+Z5+Z6)/6 mx3 = (X3+X4)/2 my3 = (Y3+Y4)/2 mz3 = (Z3+Z4)/2 mx4 = (X4+X5)/2 my4 = (Y4+Y5)/2 mz4 = (Z4+Z5)/2 mx5 = (X5+X4)/2 my5 = (Y5+Y4)/2 mz5 = (Z5+Z4)/2 mx6 = (X6+X1)/2 my6 = (Y6+Y1)/2 mz6 = (Z6+Z1)/2 switch(shapeName){ case 'TruncatedOctahedron': a = [] X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] if(depth){ shape = [...shape, a] }else{ shape = [...shape, ...subbed(1, size, 0, [structuredClone(a)])] } a = [] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] if(depth){ shape = [...shape, a] }else{ shape = [...shape, ...subbed(1, size, 0, [structuredClone(a)])] } a = [] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] if(depth){ shape = [...shape, a] }else{ shape = [...shape, ...subbed(1, size, 0, [structuredClone(a)])] } a = [] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] if(depth){ shape = [...shape, a] }else{ shape = [...shape, ...subbed(1, size, 0, [structuredClone(a)])] } a = [] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = X6, Y = Y6, Z = Z6, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] if(depth){ shape = [...shape, a] }else{ shape = [...shape, ...subbed(1, size, 0, [structuredClone(a)])] } a = [] X = X6, Y = Y6, Z = Z6, a = [...a, [X,Y,Z]] X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] if(depth){ shape = [...shape, a] }else{ shape = [...shape, ...subbed(1, size, 0, [structuredClone(a)])] } break default: X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X2, Y = Y2, Z = Z2, a = [...a, [X,Y,Z]] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X3, Y = Y3, Z = Z3, a = [...a, [X,Y,Z]] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X4, Y = Y4, Z = Z4, a = [...a, [X,Y,Z]] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X5, Y = Y5, Z = Z5, a = [...a, [X,Y,Z]] X = X6, Y = Y6, Z = Z6, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] a = [] X = X6, Y = Y6, Z = Z6, a = [...a, [X,Y,Z]] X = X1, Y = Y1, Z = Z1, a = [...a, [X,Y,Z]] X = cx, Y = cy, Z = cz, a = [...a, [X,Y,Z]] shape = [...shape, a] break } a = [] break } }) depth++ } if(sphereize){ ip1 = sphereize ip2 = 1-sphereize shape = shape.map(v=>{ v = v.map(q=>{ X = q[0] Y = q[1] Z = q[2] d = Math.hypot(X,Y,Z) X /= d Y /= d Z /= d X *= size/2*ip1 + d*ip2 Y *= size/2*ip1 + d*ip2 Z *= size/2*ip1 + d*ip2 return [X,Y,Z] }) return v }) } return shape } subDividedIcosahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Icosahedron(size)) subDividedTetrahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Tetrahedron(size)) subDividedOctahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Octahedron(size)) subDividedCube = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Cube(size)) subDividedDodecahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, Dodecahedron(size)) subDividedTruncatedOctahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, TruncatedOctahedron(size), 'TruncatedOctahedron') subDividedStellatedDodecahedron = (size, subs, sphereize = 0) => subbed(subs, size, sphereize, StellatedDodecahedron(size)) stroke = (scol, fcol, lw, dl, oga=1, ocp=true) => { if(scol){ x.strokeStyle = scol if(ocp) x.closePath() x.lineWidth = Math.min(500, 20/Z*lw) if(dl){ x.globalAlpha = .33 * oga x.stroke() x.lineWidth/=4 } x.globalAlpha = 1*oga x.stroke() } if(fcol){ x.globalAlpha = 1*oga x.fillStyle = fcol x.fill() } } Rl = Pt = Yw = oX = oY = oZ = 0 shape = subDividedCube(11.5, 4, 2).map(v => { v.map(q=>{ X = q[0] Y = q[1] Z = q[2] d1 = Math.hypot(X,Y,Z) d2 = Math.max(d1 + Math.max(0, ((d1-2.75)*10)**3/6e3), 4.5) X /= d1 Y /= d1 Z /= d1 X *= d2 Y *= d2 Z *= d2 q[0] = X q[1] = Y q[2] = Z }) return v }) } //x.globalAlpha = .25 //x.drawImage(bg,0,0,c.width,c.height) x.globalAlpha = 1 x.fillStyle = `#000` x.fillRect(0,0,c.width,c.height) x.lineJoin = x.lineCap = 'roud' oX = 0 oY = 0 oZ = Math.min(16, Math.max(2, (.3+C(t/3-.5))*16)) Rl = 0 Pt = Math.min(Math.PI, Math.max(0, (.3+C(t/2))*Math.PI)) Yw = t/4 + Math.PI/2 ip1 = Math.min(.5, Math.max(0, (.7+C(t*4))*.5))*1.5 ip2 = 1-ip1 forSort = [] facetMargin = 1+.025-Math.min(.5, Math.max(0, (.5-C(t*1.5))*1)) shape.map(v=>{ ax1 = ay1 = az1 = 0 ax2 = ay2 = az2 = 0 v_ = structuredClone(v) v_.map(q => { X = q[0] Y = q[1] Z = q[2] ax1 += X ay1 += Y az1 += Z d1 = Math.hypot(X,Y,Z) d2 = (5 - (d1-5)) * ip1 + d1 * ip2 X /= d1 Y /= d1 Z /= d1 X *= d2 Y *= d2 Z *= d2 R(Rl,Pt,Yw,1) ax2 += q[0] = X ay2 += q[1] = Y az2 += q[2] = Z }) ax1 /= v.length ay1 /= v.length az1 /= v.length ax2 /= v.length ay2 /= v.length az2 /= v.length n = Normal(v_, true) nx1 = n[0] ny1 = n[1] nz1 = n[2] nx2 = n[3] ny2 = n[4] nz2 = n[5] if(1||nz2
{ X = ax1 + (q[0] - ax1) * facetMargin Y = ay1 + (q[1] - ay1) * facetMargin Z = az1 + (q[2] - az1) * facetMargin d1 = Math.hypot(X,Y,Z) d2 = (5 - (d1-5)) * ip1 + d1 * ip2 X /= d1 Y /= d1 Z /= d1 X *= d2 Y *= d2 Z *= d2 R(Rl,Pt,Yw,1) if(Z>0) f = [...f, Q()] }) d = Math.hypot(a = nx2-nx1, b = ny2-ny1, e = nz2-nz1) + .00001 p2 = Math.acos(b/d) - Math.PI/2 d = Math.hypot(ax2, ay2, az2) col1 = '' col = 0//d > 36 ? -d*4 - 100 : -150 lum = Math.min(100, Math.max(2, 33+p2*66))*.95 col2 = `hsla(${(nx2-nx1)*45+t*100},50%,${lum}%,${alpha=1/((1+1)**8/4e9)})` forSort = [...forSort, [nz1+(nz2-nz1)/20, f, col1, col2]] } }) forSort.sort((a,b)=>b[0]-a[0]).map(v=>{ x.beginPath() v[1].map(q=>x.lineTo(...q)) col1 = v[2] col2 = v[3] stroke(col1, col2, 1, false) }) t+=1/60 requestAnimationFrame(Draw) } Draw()